Observation Impact on Forecast Skill with Machine Learning

Francois Vandenberghe & Dick Dee

Joint Center for Satellite Data Assimilation (JCSDA)

Boulder, CO

vandenb@ucar.edu

Forecast Sensitivity to Observations Impact (FSOI)

Assimilation cost function:

$$J = (x - x^b)^T B^{-1} (x - x^b) + (y^o - Hx)^T R^{-1} (y^o - Hx)$$

Analysis

$$x^{a} = x^{b} + BH^{T}(HBH^{T} + R)^{-1}(y^{o} - Hx^{b})$$

$$K$$

Analysis uncertainty

$$A = (I - KH)B$$

Forecast Sensitivity to Observations Impact (FSOI)

Adjoint-derived (single outer-loop) observation impact

$$\delta e \approx d^T K^T [M_b^T e(x_b^f) + M_a^T e(x_a^f)]$$

Ensemble-derived observation impact

$$\delta e \approx d^T R^{-1} L(HX_a^0) X_a^{fT} [e(x_b^f) + e(x_a^f)]$$

Forecast Sensitivity to Observations Impact (FSOI)

Total Impact

EMC 24h Observation Impact Summary Global, 00Z 07Apr-06May,2018 Total Impact (J/kg)

Observations count

Fractional Impact

Objectives

Seek for the radiance bias correction that maximizes FSOI:

- Use Machine Learning to compute bias correction coefficients (MLBC)
- Do not limit the number of predictors.
 (big data)

$$I = (y^o - Hx^b)^T \frac{\partial F}{\partial y}$$

impact innovation sensitivity

Can Forecast Sensitivity to Observations be predicted?

Machine Learning

Software: TenserFlow on Amazon

Data: Dec 2014, Jan 2015 & Feb 2015

Focus initially on AMSU

Training: Dec 1 – Feb 14

Prediction: Feb 14 - 28

Predictors: all FV3 first guess variables:

2D: Topography geopotential, Surface temperature, Fraction-of-land, Fraction-of-land-ice, Fraction-of-lake, Fraction-of-ocean, Fraction-of-ocean-ice, Surface Pressure. **3D**: Pressure Thickness, Zonal Wind, Meridional wind, Virtual Temperature, Specific Humidity, ozone, Mass Fraction Cloud Ice Water, Mass Fraction Cloud Liquid Water.

Data Size

	Number of files	Avg file size	Total files size
Observation	360	48.9 MB	17.2 GB
Model background	360	464.2 MB	163.2 GB

Data Analysis

GMAO Dec-Jan-Feb 2015 scaled sensitivity AMSU N18 channel 7

p-value = 0.0, sample does not look Gaussian

Data Analysis

GMAO Dec-Jan-Feb 2015 scaled sensitivity AMSU N18 channel 7

Kurtosis measure: 54.68

Machine Learning

Gradient Boosting

GMAO Forecast Sensitivity to AMSUA Channel 14: Test data (x-axis) and predictions (y-axis) 00z analyses for December 2014 (~3.5x10⁵ obs)

Linear Regression

Test data (x-axis) and predictions (y-axis) for GMAO Dec-Jan-Feb 2015 sensitivity AMSU N18 channel 7

Gradient Boosting

Test data (x-axis) and predictions (y-axis) for GMAO Dec-Jan-Feb 2015 sensitivity AMSU N18 channel 7

Results

Mean Squared Errors AMSUA N18 CH7

Summary

- Forecast to Observation Sensitivity is not gaussian.
- Sophisticated ML techniques lead to better results than simple regression
- Very limited predictability.